首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1076篇
  免费   94篇
  国内免费   45篇
  2023年   10篇
  2022年   6篇
  2021年   21篇
  2020年   25篇
  2019年   25篇
  2018年   31篇
  2017年   24篇
  2016年   29篇
  2015年   37篇
  2014年   79篇
  2013年   91篇
  2012年   57篇
  2011年   86篇
  2010年   52篇
  2009年   86篇
  2008年   57篇
  2007年   71篇
  2006年   55篇
  2005年   42篇
  2004年   35篇
  2003年   41篇
  2002年   27篇
  2001年   14篇
  2000年   15篇
  1999年   20篇
  1998年   14篇
  1997年   13篇
  1996年   14篇
  1995年   7篇
  1994年   12篇
  1993年   8篇
  1992年   10篇
  1991年   7篇
  1990年   11篇
  1989年   6篇
  1988年   4篇
  1987年   8篇
  1986年   3篇
  1985年   13篇
  1984年   12篇
  1983年   9篇
  1982年   10篇
  1981年   8篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1215条查询结果,搜索用时 46 毫秒
81.
Neuromuscular decline occurs with aging. The neuromuscular junction (NMJ), the interface between motor nerve and muscle, also undergoes age‐related changes. Aging effects on the NMJ components—motor nerve terminal, acetylcholine receptors (AChRs), and nonmyelinating terminal Schwann cells (tSCs)—have not been comprehensively evaluated. Sirtuins delay mammalian aging and increase longevity. Increased hypothalamic Sirt1 expression results in more youthful physiology, but the relationship between NMJ morphology and hypothalamic Sirt1 was previously unknown. In wild‐type mice, all NMJ components showed age‐associated morphological changes with ~80% of NMJs displaying abnormalities by 17 months of age. Aged mice with brain‐specific Sirt1 overexpression (BRASTO) had more youthful NMJ morphologic features compared to controls with increased tSC numbers, increased NMJ innervation, and increased numbers of normal AChRs. Sympathetic NMJ innervation was increased in BRASTO mice. In contrast, hypothalamic‐specific Sirt1 knockdown led to tSC abnormalities, decreased tSC numbers, and more denervated endplates compared to controls. Our data suggest that hypothalamic Sirt1 functions to protect NMJs in skeletal muscle from age‐related changes via sympathetic innervation.  相似文献   
82.
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus–host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.  相似文献   
83.
84.

Background

It remains an open question whether plant phloem sap proteins are functionally involved in plant defense mechanisms.

Methods

The antifungal effects of two profilin proteins from Arabidopsis thaliana, AtPFN1 and AtPFN2, were tested against 11 molds and 4 yeast fungal strains. Fluorescence profiling, biophysical, and biochemical analyses were employed to investigate their antifungal mechanism.

Results

Recombinant AtPFN1 and AtPFN2 proteins, expressed in Escherichia coli, inhibited the cell growth of various pathogenic fungal strains at concentrations ranging from 10 to 160?μg/mL. The proteins showed significant intracellular accumulation and cell-binding affinity for fungal cells. Interestingly, the AtPFN proteins could penetrate the fungal cell wall and membrane and act as inhibitors of fungal growth via generation of cellular reactive oxygen species and mitochondrial superoxide. This triggered the AtPFN variant-induced cell apoptosis, resulting in morphological changes in the cells.

Conclusion

PFNs may play a critical role as antifungal proteins in the Arabidopsis defense system against fungal pathogen attacks.

General significance

The present study indicates that two profilin proteins, AtPFN1 and AtPFN2, can act as natural antimicrobial agents in the plant defense system.  相似文献   
85.
Residue dynamics and risk assessment of the insecticide dimethoate applied to sweet potato, purple flowering stalk, Chinese kale, celery were investigated under the climatic conditions of China. The dissipation experiments indicated that the half-lives of dimethoate in purple flowering stalk, Chinese kale, celery, and soil were 5.9–6.5, 3.8–5.1, 3.5–5.4, 3.4–3.6 d, respectively. The terminal residues of dimethoate and omethoate in the vegetables and soil ranged from 0.008 to 1.73 mg kg?1 at preharvest intervals of 3, 5, and 7 d. The results showed risk quotient (RQ) of <1 for sweet potato, Chinese kale, and celery, and of >1 for purple flowering stalk when under the age of 18, indicating that spraying dimethoate on sweet potato, Chinese kale, and celery at the recommended dosage is safe for human consumption, whereas spraying it on purple flowering stalk is associated with some risks to human health.  相似文献   
86.
Short interspersed nuclear elements (SINEs) are non‐autonomous non‐long terminal repeat retrotransposons which are widely distributed in eukaryotic organisms. While SINEs have been intensively studied in animals, only limited information is available about plant SINEs. We analysed 22 SINE families from seven genomes of the Amaranthaceae family and identified 34 806 SINEs, including 19 549 full‐length copies. With the focus on sugar beet (Beta vulgaris), we performed a comparative analysis of the diversity, genomic and chromosomal organization and the methylation of SINEs to provide a detailed insight into the evolution and age of Amaranthaceae SINEs. The lengths of consensus sequences of SINEs range from 113 nucleotides (nt) up to 224 nt. The SINEs show dispersed distribution on all chromosomes but were found with higher incidence in subterminal euchromatic chromosome regions. The methylation of SINEs is increased compared with their flanking regions, and the strongest effect is visible for cytosines in the CHH context, indicating an involvement of asymmetric methylation in the silencing of SINEs.  相似文献   
87.
88.
The feline immunodeficiency virus (FIV) is a lentivirus that is related to human immunodeficiency virus (HIV), causing a similar pathology in cats. It is a potential small animal model for AIDS and the FIV-based vectors are also being pursued for human gene therapy. Previous studies have mapped the FIV packaging signal (ψ) to two or more discontinuous regions within the 5′ 511 nt of the genomic RNA and structural analyses have determined its secondary structure. The 5′ and 3′ sequences within ψ region interact through extensive long-range interactions (LRIs), including a conserved heptanucleotide interaction between R/U5 and gag. Other secondary structural elements identified include a conserved 150 nt stem-loop (SL2) and a small palindromic stem-loop within gag open reading frame that might act as a viral dimerization initiation site. We have performed extensive mutational analysis of these sequences and structures and ascertained their importance in FIV packaging using a trans-complementation assay. Disrupting the conserved heptanucleotide LRI to prevent base pairing between R/U5 and gag reduced packaging by 2.8-5.5 fold. Restoration of pairing using an alternative, non-wild type (wt) LRI sequence restored RNA packaging and propagation to wt levels, suggesting that it is the structure of the LRI, rather than its sequence, that is important for FIV packaging. Disrupting the palindrome within gag reduced packaging by 1.5-3-fold, but substitution with a different palindromic sequence did not restore packaging completely, suggesting that the sequence of this region as well as its palindromic nature is important. Mutation of individual regions of SL2 did not have a pronounced effect on FIV packaging, suggesting that either it is the structure of SL2 as a whole that is necessary for optimal packaging, or that there is redundancy within this structure. The mutational analysis presented here has further validated the previously predicted RNA secondary structure of FIV ψ.  相似文献   
89.
The phytochemicals plumbagin and juglone have recently been gaining importance because of their various pharmacological activities. In this study, these compounds are shown to induce concentration- and time-dependent toxicity in human peripheral blood lymphocytes via the apoptotic pathway. Flow cytometry data revealed the occurrence of about 28% early apoptotic cells after 6 h exposure to 10 μM plumbagin and 35% late apoptotic cells and about 43% sub-G1 population after 24 h. The cytotoxic effect of plumbagin was at least twofold higher than that of juglone as evidenced by the IC50 value for cytotoxicity. Characteristic apoptotic features such as chromatin condensation and apoptotic body formation were observed through TEM, and membrane blebbing and cell surface smoothening were seen in SEM studies. Generation of ROS was evidenced through the HPLC analysis of superoxide-specific 2-OH-E+ formation. In addition, a decrease in GSH levels parallel to ROS production was observed. Reversal of apoptosis in both NAC- and Tempol-pretreated cells indicates the involvement of both ROS generation and GSH depletion in plumbagin- and juglone-induced apoptosis. The mechanistic pathway involves a decrease in MMP; alterations in the levels of Bcl-2, Bax, and cytosolic cytochrome c; and PARP-1 cleavage subsequent to caspase-3 activation.  相似文献   
90.
Few studies have been made in regard to the effect of aluminum on the molecular and cellular structure and function of aquatic organisms; therefore, in the present report we determined the genotoxic and cytotoxic effects induced by the metal on the lymphocytes of carp (Cyprinus carpio). Three groups of fish were exposed to 0.05, 120, and 239 mg/L of aluminum (Al), respectively, by using Al2 (SO4)3·7H2O, and another group was included as control. The cells obtained were studied with the comet assay, flow cytometry, and the TUNEL method. With the first method we found a concentration and time dependent, significant increase in the amount of DNA damage induced by Al, and a higher damage when we evaluated the level of oxidized DNA. By applying flow cytometry we established that the metal induced a DNA content increase and ploidy modifications as well as apoptosis and disturbances of the cell cycle progression. With the last method we determined a significant increase in the amount of apoptotic cells, mainly in the 72–96 h period. Our results established that Al caused deleterious DNA and cellular effects in the tested organism, and they suggested the pertinence of evaluating toxicity induced by the metal in organisms living in contaminated water bodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号